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In-depth analysis of SARS-CoV-2 biology and pathogenesis is rapidly

unraveling the mechanisms through which the virus induces all aspects of

COVID-19 pathology. Emergence of hundreds of variants and several

important variants of concern has focused research on the mechanistic elu-

cidation of virus mutagenesis. RNA viruses evolve quickly either through

the error-prone polymerase or the RNA-editing machinery of the cell. In

this review, we are discussing the links between cellular senescence, a natu-

ral aging process that has been recently linked to SARS-CoV-2 infection,

and virus mutagenesis through the RNA-editing enzymes APOBEC. The

action of APOBEC, enhanced by cellular senescence, is hypothesized to

assist the emergence of novel variants, called quasispecies, within a cell or

organism. These variants when introduced to the community may lead to

the generation of a variant of concern, depending on fitness and transmissi-

bility of the new genome. Such a mechanism of virus evolution may

highlight the importance of inhibitors of cellular senescence during SARS-

CoV-2 clinical treatment.

Cellular senescence

Cellular senescence is a fundamental process through

which a cell adopts a prolonged, generally irreversible,

cell-cycle arrest accompanied by secretory activities

termed senescence-associated secretory phenotype

(SASP), upon damage or stress [1]. Senescent cells con-

tinually occur and are removed by immune cells,

mainly macrophages and NK cells attracted by SASP,

over the organism’s lifespan. Transient incidence of
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this dynamic cellular state plays beneficial roles in vari-

ous physiological processes ensuring cellular and

organismal homeostasis. During embryogenesis, senes-

cence facilitates tissue development and morphogenesis

while in the adult life apart from promoting tissue

repair, it restrains the expansion of damaged cells. On

the contrary, senescent cells can exert detrimental

antagonistic effects through paracrine and/or system-

atic SASP, if not timely removed. Indeed, persistent

senescence promotes tissue/organ dysfunction by

reducing their regenerative potential and by promoting

disruptive chronic inflammation and fibrosis, eventu-

ally leading the development of age-related or degener-

ative pathologies and aging [1].

The senescent phenotype is highly diverse, and

mechanisms involved are not requisitely preserved

among the senescence programs [1]. However, for con-

ventional reasons, cellular senescence has been divided

into two main categories. The term replicative senes-

cence was initially proposed by Leonard Hayflick and

colleagues in order to describe permanent arrest of

human cells following a number of cell divisions in

culture. Nowadays, it is known that replicative senes-

cence is related to shortened telomere length and

telomere dysfunction [1,2]. The second category repre-

sents stress-induced senescence, a wide group of senes-

cence phenotypes which are triggered by a variety of

insults regardless of telomeres [1,2]. Depending on the

hallmarks of the stressogenic insult and the cell/tissue

type, senescent cells can exhibit a wide spectrum of

morphological, structural, and functional features

[1,2]. Therefore, a multimarker approach for the pre-

cise determination of the senescence phenotype in bio-

logical and clinical specimens has been adopted [1,3].

Despite this heterogeneity, apart from cell-cycle with-

drawal and secretory properties already mentioned,

macromolecular damage, altered metabolism, and

increased survival are among the characteristics con-

stantly evident in senescent cells [1].

Increased viability of senescent cells stems from the

fact that they are more resistant to apoptosis in rela-

tion to normal proliferating (nonsenescent) cells [4].

Their lifetime can extent up to several weeks compared

to the few days of their proliferating counterparts [5].

Apoptotic tolerance has been related to a plethora of

insults (UV, ionizing radiation, oxidative stress, drugs,

serum starvation) and a variety of cell types [fibrob-

lasts, endothelial cells/human umbilical vein endothe-

lial cell (HUVECs), and keratinocytes], denoting the

role of cellular senescence as an adaptive response

[4,6,7]. Accumulating evidence from proteomic and

transcriptomic investigations supports that the

extended lifespan of senescent cells depends on the

activation of various, multilevel regulated, pro-survival

pathways cumulatively described as senescent cell anti-

apoptotic pathways (SCAPs) [4,6–8]. The pathways

include networks related to p53/p21/serpins, BCL-2/

Bcl-XL, PI3K/AKT/ceramide signaling, the hypoxia-

inducible factor 1a (HIF-1a) pathway, or HSP90-

dependent cascades, which are closely interconnected

[4,6]. SCAPS are directly related to many features of

the senescent phenotype and seem to protect senescent

cells from their own pro-inflammatory secretome [7].

Given that they have emerged as essential targets for

the development of senotherapeutic—particularly seno-

lytic—strategies they are described as the Achilles’ heel

of senescent cells [7]. Indeed, inhibition of pro-survival

pathways and a decrease in the expression of SCAP

mediators can promote elimination of senescent and

virus-infected cells, at least in some cell types [8]. In

some instances, more than one SCAP pathways must

be targeted to eliminate senescent cells, suggesting

redundancy of cell defenses against apoptosis [9].

SARS-CoV-2: structure—life
cycle—variants

In December 2019, many cases of a novel type of

pneumonia were reported in Wuhan, Hubei Province,

in China. This phenomenon rapidly evolved as a glo-

bal pandemic which was named coronavirus disease

2019 (COVID-19) and was attributed to a new beta-

coronavirus termed SAR-CoV-2 [10]. SAR-CoV-2

belongs to the family of Coronaviridae that are known

to cause respiratory and neurological diseases.

SAR-CoV is an enveloped, nonsegmented, positive

sense RNA virus. SARS-CoV-2 genome exhibits high

homology, up to 80%, with SARS-CoV and MERS-

CoV, at phylogenetic level [11]. Its genome is single-

stranded and RNA-positive, with a size between 26.4

and 31.7 kb and a diameter of about 65–125 nm. The

genome is composed of two untranslated regions

(UTRs) at the 50 and 30 ends and a variable number

(6–11) of open reading frames (ORFs) which encode

27 different proteins responsible for the replication

and infection of the virus [12].

During the infection of the cells, the genomic RNA is

translated from two ORFs, ORF1a and ORF1b, which

encode nonstructural proteins (nsps). The subgenomic

region comprising these ORFs is highly conserved

between Coronavirinae subfamily members and consists

of pp1a and pp1b genes encoding the nsps polyprotein

1a and b, respectively. Both polyprotein 1a and b are

cleaved producing 11 and 16 nsps, respectively, by a

reaction which is catalyzed by viral proteases nsp3 and

nsp5 [12,13]. Nsp12 is a key producing molecule which
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acts as an RNA-dependent RNA polymerase (RdRp)

indicating that the viral RNA is used as template for

virus replication. Downstream of this conserved region

the remaining subgenomic region encodes genes for

structural viral proteins. Using cell’s own machinery,

SARS-CoV-2 synthesizes its positive sense genomic and

subgenomic RNA, the latter encoding conserved struc-

tural proteins (spike protein [S], envelope protein [E],

membrane protein [M], and nucleocapsid protein [N]),

and 6 several accessory proteins [14].

Spike protein (S) consists of two subunits the N-

terminal half (S1) and C-terminal half (S2). S1 domain

also contains the receptor-binding domain (RBD) of

the virus. Each domain is responsible for a different

process. Angiotensin-converting enzyme 2 (ACE2) is

the recognized receptor from virus and RBD is the key

domain of S protein for the binding of virions to the

receptor of host cells [15]. S2 subunit has a key role in

the process of fusion between the virus and the cell

membrane acting as a class I viral fusion protein [16].

Also, stabilization of fusion machinery complex is sup-

ported by the RBD, making it a crucial molecule for

the infection and a potential therapeutic target.

The envelope protein is an oligomeric protein

located at the membrane of SARS-CoV-2 acting as

viroporin creating a pentameric protein–lipid ion

transport channel [17]. Membrane protein (M) is a gly-

coprotein and the most abundantly expressed from the

virus in host cells. It mediates the viral assembly and

maturation via protein interaction with the structural

viral proteins shaping the virions [18].

Nucleocapsid (N) protein is a dimeric protein which

interacts directly with the RNA of virus and provides

the genomic stability necessary for the RNA transcrip-

tion and replication. The main role of N protein is the

packaging of RNA into nucleocapsid structure or

ribonucleoprotein (RNP) complex [19] promoting the

viral release [20].

The emergence of SARS-CoV-2 variants has numer-

ous implications in transmissibility, pathogenicity,

immunity, and re-infection. Since December 2019, mul-

tiple variants and variants of concern have emerged

worldwide, often prompting local or broad changes in

public health management. To date, 5 major variants

of concern have been identified thought worldwide

SARS-Cov-2 complete genome sequencing. Variants

B.1.1.7, B.1.1.7+E484K, B.1.351, P.1, and B.1.617.2

have significantly affected public health management

due to the impact of their mutations on transmissibil-

ity immunity and disease severity [21–30]. In some

cases, mutations such as N501Y [31] are recurring sig-

nifying the existence of hotspots within the genome

that contribute to virus adaptation to humans.

These variants arise through the evolution of SARS-

CoV-2 RNA genome mainly through two mechanisms:

a virus polymerase-mediated and a cell-mediated.

RdRp of RNA viruses such as nsp12 of SARS-CoV-2

(together with accessory subunits, nsp8 and nsp7) [32]

have a high error rate, introducing random mutations.

RdRp-mediated coronaviruses, in contrast to other

RNA viruses, code for a proofreading exonuclease

(nsp14) [33] that may correct such nucleotide misincor-

porations, probably as a requirement for the integrity

of its large RNA genome, the largest among RNA

viruses [34]. This proofreading mechanism minimizes

the impact of polymerase-mediated genetic drift of

coronavirus genomes. Moreover, the ubiquitin ligase

complex could also play a role. Particularly, the

interplay of ORF10 with the members of a cullin-2

(CUL2) RING E3 ligase complex may inactivate

APOBEC (apolipoprotein B mRNA-editing catalytic

polypeptide-like) by inducing ubiquitination and pro-

teasomal degradation, similarly to the mechanism

shown in HIV [35]. On the other hand, RNA-editing

machinery may significantly contribute to viral genome

evolution postgenome replication. Adenosine deami-

nases acting on RNA (ADAR) and APOBEC enzyme

have been mainly implicated in SARS-Cov-2 evolution

[36]. ADAR enzymes introduce adenosine-to-inosine

changes while APOBEC enzymes introduce cytosine-

to-uracil changes.

Both mechanisms introduce mutations across the

genome, which are further subjected to natural selec-

tion in terms of viability and fitness. Most of the

amino acid changes in virus genomes are lethal or sig-

nificantly reduce virus fitness by disturbing important

structures and interactions [37]. Mutations that consti-

tute now variants of concern used to be preexisting

variant genome quasispecies that rose in a single

patient (patient 0 of each variant). However, as stated

previously it is possible that a certain mutation may

occur more than once independently. Increased fitness

of mutant quasispecies may lead to domination within

a patient, while increased transmissibility may lead to

community domination [38].

SARS-CoV-2 RNA editing—APOBEC
enzymes

Expression of RNA-editing enzymes is induced during

infection, usually downstream of innate immunity

pathways [39,40]. It has been hypothesized that these

enzymes have evolved from ancient intracellular innate

immune mediators against viruses [40]. APOBEC

enzymes, among other RNA-editing enzymes, act as

suppressors of either RNA virus replication through
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the introduction of debilitating hypermutations within

the genome [41], or act as silencers of endogenous

retrovirus expression and function [42]. APOBEC

enzymes are thought to have co-evolved with viruses

increasing in complexity after the waves of retrovirus

colonization of the eukaryotic genomes [42]. Despite

the fact that APOBEC enzymes have been mainly

studied in conjunction with retrovirus pathogenesis

and integration, a significant part of the literature has

focused on APOBEC effect on the replication of posi-

tive and negative strand RNA viruses without DNA

intermediate. APOBEC3G inhibited efficiently the

replication of measles, mumps, and respiratory syncy-

tial viruses [43]. The presence of APOBEC3G affected

several steps in viral RNA synthesis, resulting in

impaired viral transcription and increased genome

mutation frequency [43]. On the other hand, APO-

BEC3G did not affect influenza virus replication

although it is greatly upregulated during influenza

virus infection [44]. An APOBEC3G inducing antiviral

drug (IMB-Z, a N-phenylbenzamide derivative) led to

inhibition of enterovirus 71 through interaction with

viral 3D RdRp and viral RNA and incorporation into

progeny virions [45]. Intriguingly, this report claimed

that APOBEC3G antiviral activity was not associated

with its cytidine deaminase activity.

Early during SARS-CoV-2 pandemic, the accumula-

tion of complete genomes worldwide highlighted a

possible relationship between C to U transitions and

APOBEC activity [36,46,47]. C to U transitions were

observed to preferentially occur downstream of uridi-

nes and adenosines in -1 and -2 positions for the tran-

sition point resembling to APOBEC1 consensus target

sequence [48]. Contrary, a study that screened viral

genomes failed to identify APOBEC3 footprints in

MERS-CoV, SARS-CoV, and SARS-CoV-2 coron-

avirus genomes, although endemic coronaviruses were

significantly footprinted [49]. The activity of APOBEC

could be exerted in both positive and negative strands

during RNA virus replication, leaving, however, a dif-

ferent footprint in each hypothesized model. A model

of APOBEC enzyme intervention ‘early’ during viral

replication on the SARS-CoV-2-positive strand could

better fit to the observed high rate of C to U transi-

tions in contrast to G to A transitions that correlate

with negative strand processing [42]. Accumulation of

random hypermutations within SARS-CoV-2 nascent

genomic RNAs may undermine viability or replication

efficiency of a significant proportion of these genomes.

While in theory, SARS-CoV-2 hypermutation would

result in virus evolutionary counteraction, previous

work on SARS-CoV revealed that the virus may

actively package APOBEC3G inside virus particles,

similarly to HIV particles [50], through direct interac-

tion with SARS-CoV N protein [51]. Packaging of

APOBEC in HIV and SARS-CoV may result in in-

virion APOBEC activity or an ‘early’ action upon viral

RNA release into the cytoplasm during infection. Vif

protein of HIV is a well-known inhibitor of APO-

BEC3G that inhibits its interaction with N protein

and targets it for degradation through the proteasome

[52]. N protein is the structural protein of coron-

aviruses that coats viral RNA within the virion, while

in parallel protects viral RNA from host posttranscrip-

tional control machinery, such as RNA [53]. A differ-

ent opinion was put forward during the assessment of

coronavirus hypermutation rate after overexpression

of different APOBEC enzymes. While APOBEC3C,

3F, and 3H were able to inhibit virus proliferation,

screening for APOBEC-related footprints did not

reveal any effect, with the authors speculating that an

unknown virus or virus-induced factor may counteract

APOBEC activity [41]. They further speculated that

the N protein interaction with APOBEC is a possible

mechanism.

Changes in APOBEC expression may directly affect

variant emergence. Thus, monitoring of mRNA abun-

dance in conjunction with disease progression and

severity may provide insights into virus evolution

either within a host or the community. Analysis of dif-

ferentially expressed mRNAs in the blood of COVID-

19 patients revealed that APOBEC3G mRNA together

with other type I interferon signaling-related mRNAs

was upregulated in patients with mild and severe

COVID-19 [53]. Intriguingly, APOBEC3G was less

upregulated in severe disease group in the report [54].

Possibly, changes in blood cell populations during sev-

ere COVID-19 [55] may account for the observed

reduction of APOBEG3G as it is predominantly

expressed in lymphocytes [56] within blood cell popu-

lations. Stimulating cells with single-stranded RNAs

(ssRNAs) that represented SARS-CoV-2 genome

stretches before and post-APOBEC action provided

evidence of APOBEC-mediated transitions involve-

ment in COVID-19 pathology. In this in vitro study,

stimulation of cells with RNAs with higher uracil con-

tent led to higher TNF-a and IL-6 expression [57].

Such an increase in pro-inflammatory status may have

implications in COVID-19 cytokine storm initiation.

Cellular senescence and SARS-CoV-2
quasispecies generation

The knowledge linking cellular senescence with viral

infection is limited and stems mainly from indirect

observations [3]. Viral infection has been associated
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with DNA damage and cell fusion, both well-known

inducers of senescence [58,59]. On a non-cell-

autonomous basis, viral infection elicits antiviral

responses mediated by the release of pro-inflammatory

factors (interferon I and III, interferon-c, and IL-6)

and the activation of the cyclic GMP-AMP synthase

(cGAS)-stimulator of interferon genes (STING) signal-

ing pathway [60–62]. These processes allow infected

cells to induce senescence, through a bystander effect,

in other noninfected cells within the adjacent environ-

ment [63,64]. Interestingly, a sufficient number of

cytokines/chemokines implicated in the highly lethal

‘cytokine storm’ related to COVID-19 can trigger

senescence on a long-term basis in a paracrine manner

[63–65]. Viral-mediated interferons (IFNs) may also

promote senescence via inflammatory-mediated cell

death mechanisms (e.g., necroptosis, pyroptosis),

which results in release of molecules termed danger-

associated molecular patterns (DAMPs) [66]. The lat-

ter can trigger interferon signaling cascades, which in

turn can induce senescence [64,67–70]. Regarding the

relationship of SARS-CoV-2 infection with senescence,

only hypotheses without proof have been speculated.

Recent evidence from our group in the lower respi-

ratory system of COVID-19 patients suggests that cel-

lular senescence is directly induced by SARS-CoV-2,

providing the first worldwide demonstration of viral-

induced senescence [71]. By applying the same estab-

lished senescence detecting methodology (GL13-

SenTraGorTM), these findings were confirmed in experi-

mental models and in the upper respiratory track of

clinical settings [72]. It was demonstrated that the virus

highjacks several host mechanisms of the senescent

cell, including the mitochondrion. Specifically, dysfunc-

tional mitochondria release reactive oxygen species

(ROS) that shorten telomere length, inducing cellular

senescence [72]. Based on these findings, senolytic

drugs, including Quercetin, have been proposed for the

treatment of COVID-19. SARS-CoV-2-mediated senes-

cence is accompanied by increased expression of SASP

factors as well as elevated APOBEC enzyme expres-

sion [71]. The latter is in line with our recent findings

supporting abundance of the APOBEC enzymes, espe-

cially APOBEC G and H, in cells undergoing stress-

induced senescence [73,74]. Based on these data and

the fact that infected senescent cells exhibit prolonged

survival, we hypothesized that cellular senescence

could contribute to the emergence of APOBEC foot-

prints in the viral genome (Fig. 1). In this cellular con-

text, the virus can be hosted for longer periods

compared to other cells with higher proliferation rates,

rendering its genome prone to host-mediated editing

Fig. 1. Proposed model for viral-induced senescence as a ‘fertile’ environment for SARS-CoV-2 quasispecies generation. In brief, SARS-CoV-

2 triggers senescence in infected alveolar type II (ATII) cells that is accompanied by an inflammatory phenotype. Given that senescent cells

are resistant to apoptosis, the virus can be harbored for prolonged periods, making thus its genome more vulnerable to host-mediated

editing. High levels of the APOBEC enzymes, that are responsible for virome editing, occur in senescent cells. Eventually, APOBEC-

mediated phenomena include the following: (a) nucleotide substitutions in the progeny derived from the ‘paternal’ strain take place and (b)

further increase of released pro-inflammatory factors.
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(Fig. 1). Further supporting our case, by analyzing a

large cohort of SARS-CoV-2 strains available in the

GISAID database, we showed that APOBEC signa-

tures potently determine the mutational profile of the

SARS-CoV-2 genome [71]. Indeed, by comparing the

viral sequence at the onset and following prolonged

infection in an in vitro setting, an APOBEC-driven

mutational signature in the virome of the progeny was

identified [71].

Conclusion

In the current review, we discuss the hypothesis linking

viral-induced cellular senescence and SARS-Cov-2

virus mutagenesis. We suggest that application of

senolytic drugs that eliminate senescent cells should be

taken into consideration in the context of COVID-19

disease. Firstly, senolytic drugs might prevent the

potential adverse effects of SASP, improving the clini-

cal outcome of patients, as supported by recent find-

ings in experimental models [75]. Secondly, they could

confer in neutralizing a fertile cellular environment for

the emergence of SARS-CoV-2 quasispecies (Fig. 1)

that has direct implication in vaccine effectiveness. In

this context, a new perspective is provided in the field

of virology, exploiting the potential of senolysis and

hence providing an additional therapeutic approach.
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