
Pharmacology & Therapeutics 193 (2019) 31–49

Contents lists available at ScienceDirect

Pharmacology & Therapeutics

j ourna l homepage: www.e lsev ie r .com/ locate /pharmthera
Senescence and senotherapeutics: a new field in cancer therapy
Vassilios Myrianthopoulos a,b,c,1, Konstantinos Evangelou a,d,1, Panagiotis V.S. Vasileiou a,1, Tomer Cooks e,
Theodoros P. Vassilakopoulos f, Gerassimos A. Pangalis g, Myrsini Kouloukoussa a,h, Christos Kittas a,
Alexandros G. Georgakilas i,⁎, Vassilis G. Gorgoulis a,j,k,l,⁎⁎
a Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
b Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece
c PharmaInformatics Unit, Athena Research Center, Greece
d Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
e The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
f Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
g Department of Haematology, Athens Medical Center, Psychikon, Athens, Greece
h Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
i DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
j Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
k Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
l Biomedical Research Foundation, Academy of Athens, Athens, Greece
Abbreviations: ARF, alternate reading frame; cHL, clas
chromatin alterations reinforcing senescence; HRS, Hodgk
malian target of rapamycin; Nrf2, nuclear factor E2-relate
SAHF, senescence associated heterochromatin foci; SASP,
⁎ Corresponding author.
⁎⁎ Correspondence to: V. G. Gorgoulis, Molecular Carcin
Athens, Greece.

E-mail addresses: alexg@mail.ntua.gr (A.G. Georgakila
1 Equally contributed.

https://doi.org/10.1016/j.pharmthera.2018.08.006
0163-7258/© 2018 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Available online 16 August 2018
 Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embry-
onic development or normal adult life is linkedwith beneficial properties. In contrast, persistent (chronic) senes-
cence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack
of a reliablemarker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent
still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recog-
nition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence
in vivo. Exploiting the advantages of this novel methodological approach, scientistswill be able to detect and con-
nect senescencewith aggressive behavior in humanmalignancies, such as tolerance to chemotherapy in classical
Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new
and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We dis-
cuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and
applications.
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1. Introduction

All organisms, from single cells to multi-cellular ones, activate a va-
riety of complex biochemical pathways to ensure their homeostasis
when intrinsic or extrinsic stressogenic insults occur (Gorgoulis et al.,
2005; Bartkova et al., 2005; Bartkova et al., 2006; Halazonetis,
Gorgoulis, & Bartek, 2008; Pateras et al., 2015; Petrakis et al., 2016;
Gorgoulis, Pefani, Pateras, & Trougakos, 2018). Under physiological con-
ditions thesemechanismsmanage to counterbalance detrimental forces
that jeopardize proper cellular function, while in a non-physiological
context this balance is disrupted leading to accumulation of cellular de-
fects (Gorgoulis et al., 2018; Halazonetis et al., 2008; Pateras et al.,
2015). As a consequence, cellular malfunctioning is established, pro-
moting ageing and disease.

Cellular senescence is such a stress response mechanism, that simi-
larly to apoptosis, aims to preserve cellular/tissue homeostasis. It was
first described byHayflick andMoorhead (1961) and termed replicative
senescence, since this form was triggered by telomere attrition. Cur-
rently other forms of senescence have been defined that are collectively
known as stress induced premature senescence. They can be induced
independently of telomere length shortening by a variety of stress sig-
nals (Burton & Krizhanovsky, 2014; Georgakopoulou et al., 2016;
Gorgoulis & Halazonetis, 2010; Munoz-Espin & Serrano, 2014).
Oncogene induced senescence (OIS) is a well-established representa-
tive of stress induced premature senescence (Bartkova et al., 2006;
Halazonetis et al., 2008; Gorgoulis & Halazonetis, 2010; Petrakis et al.,
2016; Gorgoulis et al., 2018). Regardless of the initiating stimulus,
cells that undergo senescence survive exhibiting a variety of phenotyp-
ical and molecular features (Fig. 1). Some of these are increased size
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Fig. 1. Image depicting the key characteristics of senescen
with abnormal shape, cell division blockage, tolerance against apopto-
sis, metabolic dysfunction and a specialized secretory activity termed
Senescence Associated Secretory Phenotype (SASP) (Campisi, 2013;
Childs et al., 2017; Ewald, Desotelle, Wilding, & Jarrard, 2010). Addi-
tional characteristics include nuclear p16INK4A/ARF and p21WAF1/Cip1 ex-
pression, occasionally DNA damage and senescence associated
heterochromatin foci (SAHF), and increased lysosomal senescence-
associated β-galactosidase (SA-β-gal) activity. Recently, lipofuscin ac-
cumulation was also established as a hallmark of senescent cells
(Evangelou et al., 2017; Georgakopoulou et al., 2013).

A large body of experimental evidence accumulated over the last de-
cades has demonstrated that senescent cells can have beneficial as well
as harmful outcomes. Their transient occurrence in embryonic (devel-
opmental senescence) and adult life (acute senescence) due to their
clearance by the immune system ensures proper tissue/organ develop-
ment and homeostasis by withdrawal of stressed and/or damaged cells
(Fig. 2) (He & Sharpless, 2017; Munoz-Espin & Serrano, 2014). On the
contrary, senescent cell persistence (chronic senescence) and accumu-
lation in tissues with age, driven by the imbalance in senescent cell in-
duction/elimination (simultaneous accumulating stress/damage and
weakening of the immune system), seems to be related with aging
and the development and progression of age-related diseases (Fig. 2)
(Burton & Krizhanovsky, 2014; He & Sharpless, 2017; Munoz-Espin &
Serrano, 2014). In cancer, a severe age-related disease, senescence acts
in a bimodal manner. While in early stages it has a tumor-suppressive
role, in latter ones it drives cancer evolution via SASP (Bartkova et al.,
2006; Burton & Krizhanovsky, 2014; Coppe, Desprez, Krtolica, &
Campisi, 2010; Gorgoulis & Halazonetis, 2010; Halazonetis et al., 2008;
Liontos et al., 2007; Petrakis et al., 2016; Rodier & Campisi, 2011).
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Notably, cancer cells adopt a senescent phenotype following antitumor
interventions. This therapy induced senescence (TIS) has been associ-
ated with tumor relapse, metastasis and adverse prognosis, as it confers
stemness to neoplastic cells (Milanovic et al., 2018). In addition, al-
though senescence has been considered an irreversible cell-cycle arrest
program for many years, new findings suggest that senescent cells
under specific conditions can escape from this condition and re-enter
the cell cycle, acquiring aggressive features (Galanos et al., 2016;
Galanos et al., 2018; Komseli et al., 2018). This impact of the senescence
state in modulating cancer cell plasticity reveals an important aspect of
its “dark” potential (Fig. 3).

As evident so far, detection of senescence is essential. A major co-
nundrum in the field of senescence was until recently its detection in
in vivo settings, due to the lack of a reliable and applicable in clinicalma-
terial, marker. Currently available methods are either insufficient or ex-
hibit inherent inabilities for in vivo recognition of senescent cells
(Munoz-Espin & Serrano, 2014). We bypassed this problem by generat-
ing a novel chemical compound (GL13; SenTraGorTM) that detects spe-
cifically with high sensitivity senescent cells in any type of biological
Sarcop
Age-re

cache
Osteoar

Cellu
Senesc

Proge
associated 

Glauco
Macu

degener

Atherosclerosis
Cardiomyocyte 

hypertrophy
Aortic aneurysms

Immune decline

Cancer

Neuro-degenerative 
diseases

Fig. 3. The “dark side” of cellular senescence (for details see
material, thus opening newhorizons in understanding the role of senes-
cence in aging and age-related disorders (Evangelou et al., 2017).
Exploiting this new methodology in clinical settings and in order to
shed light to this exciting discovery, some examples are presented
here for the first time, detecting senescence in a primary humanmalig-
nancy, namely classical Hodgkin Lymphoma (cHL). Notably, increased
number of senescent cells in cHL confers a poorer clinical outcome, in
terms of resistance to first and second line treatment (Figs. 4–5, Suppl
Table 1–3). By the same means, we identified senescent cells also in
the context of primary human Langerhans Cell Histiocytosis (LCH), a
neoplastic lesion with high prevalence of the BRAF V600E oncogene ac-
tivating mutation (Fig. 6). The latter is associated with fatal conse-
quences in a significant cluster of disseminated cases (Badalian-Very,
2014).

Such findings denote the emerging role of senescence in age-
related disorders and aging that has been the springboard for the
quest of senescence-oriented therapeutic strategies, aiming its detri-
mental effects. To date, two main anti-senescent drug categories
have been introduced into basic and clinical research, with each
one including several classes of compounds: “senocidals” (including
senolytics and senoptotics) and senomorphics (Kirkland, Tchkonia,
Zhu, Niedernhofer, & Robbins, 2017; Niedernhofer & Robbins,
2018; Schmitt, 2017; Soto-Gamez & Demaria, 2017). The former
term represents pharmaceutical agents that specifically eliminate
senescent cells, either by apoptotic (senoptosis) or nonapoptotic
(senolysis) means. The latter consists of drugs that suppress markers
of senescence or the secretory phenotype of senescent cells, without
inducing cellular death (Childs et al., 2017; Kirkland et al., 2017;
Soto-Gamez & Demaria, 2017; Zhu et al., 2015). Moreover, pro-
senescent strategies, meaning the application of systemic senescence-
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Fig. 4. Senescence in primary human cHLs. a. Representative result from applying a hybrid Histo (GL13)-Immunohistochemical (anti-biotin) method. Arrows indicate positive GL13 HRS
cells. Diaminobenzidine (DAB) chromogenic reaction, hematoxylin counterstain. Magnifications: x400, inset: x630. b. Kaplan-Meier curves showing the differences in post-relapse HLSS,
using 10% as cutoff.
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promoting stress, such as ionizing radiation or DNA-damaging chemo-
therapy, or the restoration of defective stress-response pathways, have
also been developed (Lujambio, 2016; Watanabe, Kawamoto, Ohtani, &
Hara, 2017). Preliminary results suggest that the rapidly evolving reper-
toire of senotherapeutics could have the potential to score a significant
impact on the fight against cancer, introducing a new era in cancer ther-
apeutics (Kirkland et al., 2017; Niedernhofer & Robbins, 2018; Schmitt,
2017; Soto-Gamez&Demaria, 2017). However, given the complexnature
of both cellular senescence and cancer, as well as the various pros and
cons of each senotherapeutic modality, many issues remain to be
resolved.

In this review, we provide an updated, comprehensive insight on
cellular senescence and on current and future senotherapeutic strate-
gies, which is a highly upcomingfield of researchwith clinical and phar-
maceutical orientation. For this purpose, in the first parts, we provide
critical aspects of this biological phenomenon which are essential for
its understanding and unravel possible therapeutic targets. Next, we
highlight issues related to its recognition, focusing on a new detection
assay and on the clinical relevance. Regarding the latter, we present
novel in vivo aspects on the importance of cellular senescence in
human malignancies. In the last part, we confer an updated overview
of the spectrum of pharmacological interventions that target senescent
cells, as well as associated limitations and challenges.

2. Cellular and molecular features of senescence

Senescent cells can exhibit a plethora of morphological and molecu-
lar characteristics that are non specific alone and not globally acquired
(Fig. 1) (Munoz-Espin & Serrano, 2014; Salama, Sadaie, Hoare, &
Narita, 2014). Until recently a combination of them was required to be
evident in a cell to imply acquisition of the senescent state. These cellu-
lar (viability, large size/irregular shape, growth arrest, resistance to ap-
optosis) and subcellular (p21WAF1/Cip1, p16INK4A, SA-β-Gal activity,
lipofuscin accumulation and SASP) traits, reflect orchestratedmolecular
responses mediated by a wide spectrum of genetic and epigenetic
events.

In this context, for many years ARF, the Alternative Reading Frame
product of the INK4A/ARF locus, was considered the sole response
mechanism against activated oncogenes triggering either cell cycle ar-
rest/senescence or apoptosis. However, since genomic instability is a
hallmark of cancer (Gorgoulis et al., 2018; Negrini, Gorgoulis, &
Halazonetis, 2010) we hypothesized that the DNA Damage Response
pathway (DDR), that ensures genomic integrity (Gorgoulis et al.,
2018; Halazonetis et al., 2008; Negrini et al., 2010), could also act as a
complementary partner in this response. We demonstrated that DDR
andARF activation occurs in time-relatedmanner during carcinogenesis
and depending on the oncogenic load and cellularmilieu they set inmo-
tion either the senescent or the apoptotic antitumor barrier (Evangelou
et al., 2013; Velimezi et al., 2013). Specifically, DDR is activated from the
earliest stages of cancer due to a lower oncogenic threshold, whereas
ARF induction occurs later, as oncogenic stimuli increase (Evangelou
et al., 2013; Gorgoulis et al., 2005; Velimezi et al., 2013). Moreover,
ARF acts as a second defense line in the case that components of the
DDR machinery, like serine/threonine kinase ATM, are disabled
(Evangelou et al., 2013; Velimezi et al., 2013). As a result p53/
p21WAF1/Cip1 activation occurs inducing the antitumor barriers (senes-
cence or apoptosis) preventing transformation of incipient cancer cells
(Fig. 7) (Evangelou et al., 2013; Velimezi et al., 2013). Activation of the
p53/p21WAF1/Cip1 axis promotes a steady increase in reactive oxygen
species (ROS) generation that further fuels DNA damage (Munoz-
Espin & Serrano, 2014). This positive feedback loop seems to be both
necessary and sufficient to maintain cell cycle arrest during the estab-
lishment of senescence (Passos et al., 2010). Progression to cancer re-
quires evasion of the antitumor barriers and occurs when critical DDR
and ARF pathway components, like p53, are impaired (Galanos et al.,
2016; Gorgoulis et al., 2018; Halazonetis et al., 2008; Petrakis et al.,
2016; Petrakis, Vougas, & Gorgoulis, 2012; Sideridou et al., 2011).

The p53/p21WAF1/Cip1 axis and the products of the INK4A/ARF locus
are key players in senescence induction when cells respond also to var-
ious, other than oncogenes, stress insults. It has been suggested that
while the p53/p21WAF1 axis acts to initiate the senescence response,
p16INK4A functions for the maintenance of this state (Childs, Baker,
Kirkland, Campisi, & van Deursen, 2014). There are certain molecular
patterns followed depending on the type of senescence induced
(Fig. 2). For example, embryonic senescence strictly relies on p21WAF1/

Cip1
, TGF-b/SMAD and PI3K/FOXO pathways, but is independent of
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DNA damage, p53, or other cell-cycle inhibitors (Munoz-Espin et al.,
2013; Storer et al., 2013). Senescence can also be induced upon DNA
damage via the Rb-p16INK4A route or in response to oxidative stress
via p38MAPK mediated p16INK4A up-regulation (Iwasa, Han, & Ishikawa,
2003). p38MAPK belongs to the stress-activated protein kinase family
that responds to a variety of stresses, including oxidative stress
(Kyriakis & Avruch, 2012). ARF, as previously shown, is also a sensor
of oxidative stress signals (Liontos, Pateras, Evangelou, & Gorgoulis,
2012). Moreover, the p16INK4a/Rb-pathway is implicated in a ROS-
depended positive feedback loop, which reinforces the irreversible cell
cycle arrest in senescent cells (Takahashi et al., 2006).

In addition to cell division arrest, resistance to apoptosis is also a key
feature of the senescent phenotype, thereby favoring clearance by the
immune system (Fig. 1). Members of the BCL-2 family and other factors
such ephrins, PI3K, FOXO4 andHSP90 are implicated in this process. No-
tably, senescence and apoptosis share common signaling cascades such
as the p53 pathway. Which outcome is eventually selected by the cell,
depends on the so called “hallmarks of stress” (Childs et al., 2014;
Georgakopoulou et al., 2016; Gorgoulis et al., 2018). In this context,
we have suggested that stromal cells enter preferentially senescence
upon stress to preserve tissue homeostasis, while epithelial cells that
exhibit an increased capacity of renewal, and respond by inducing apo-
ptosis (Georgakopoulou et al., 2016; Liakou et al., 2016).

Senescent cells are also characterized by the acquisition of a distinc-
tive pro-inflammatory, proteolytic secretome, termed SASP or Senes-
cence Messaging Secretome (SMS) (Fig. 1) (Coppe et al., 2010; Evan &
d'Adda di Fagagna, 2009; Kuilman & Peeper, 2009). SASP consists of a
complex mixture of secreted cytokines, chemokines, growth factors,
and proteases. This secretory function exerts an immunomodulatory
role by augmenting and promoting senescence in an autocrine and
paracrine manner. SASP induction relies on the activation of NF-κB
andmTOR (mammalian target of rapamycin) and on p38MAPK signaling
(He & Sharpless, 2017; Herranz et al., 2015; Laberge et al., 2015). Addi-
tionally, ectodomain shedding as well as secretion via small extracellu-
lar vesicles have been both recognized as key phenomena implicated in
the release or secretion, respectively, of some SASP factors, thus
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mediating a more remote effect (Hernandez-Segura, Nehme, &
Demaria, 2018; Lehmann et al., 2008; Stow & Murray, 2013; Takasugi
et al., 2017). In this regard, extracellular vesicles have been implicated
in cancer cell proliferation, inflammation, aswell as telomere regulation
(Takasugi, 2018).

Senescent cells are characterized by increased metabolic activity,
despite cell cycle arrest. Under certain circumstances (replicative se-
nescence) a transition from oxidative phosphorylation to glycolysis
is evident (Weichhart, 2018). In general, activation of anabolic path-
ways and down-regulation of catabolic processes has been linked
with aging. The opposite pattern that ensures energy sufficiency
under calorie restriction and removal of damaged organelles, has
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been related with lifespan extension in a various organisms
(Schreiber, O'Leary, & Kennedy, 2016). The mTOR network is a cru-
cial mediator of this balance, as it integrates stimuli from nutrients,
growth factors, energy status and stress (Schreiber et al., 2016).
mTOR is active from the onset of cellular senescence and drives the
biosynthesis of molecules vital for cell integrity such as proteins,
lipids and nucleic acids. At the same time it decreases the autophagic
activity to levels that ensure cell survival but further accelerate the
progression of senescence by diminishing the clearance of damaged
biomolecules and organelles (Weichhart, 2018). In contrast, calorie
restriction which is related to longevity results in mTOR pathway in-
hibition, increased autophagy and senescence delay (Weichhart,
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2018). This seemingly inverse interplay between autophagy and se-
nescence is however more complex and controversial and further
studies are required.

Senescent cells, as alreadymentioned, rely on base line autophagic ac-
tivity to counterbalance metabolic stress and stay alive (Weichhart,
2018). To this end, lysosome function seems also essential. Cellular senes-
cence is usually characterized by increased lysosomal β-galactosidase
(commonly termed “SA-β-gal”) activity, which is attributed to active au-
tophagy along with high lysosomal content (Fig. 1) (Young et al., 2009;
Dimri et al., 1995; Kurz, Decary, Hong, & Erusalimsky, 2000; Lee et al.,
2006). The accumulation of aged lysosomes along with increased lyso-
some biogenesis seems to drive the enhanced lysosomal content that
characterizes senescent cells (Hernandez-Segura et al., 2018). In addition,
aswehave demonstrated aggregation of lipofuscin- thewastematerial of
metabolism- is a key property of senescent cells (Fig. 1) (Georgakopoulou
et al., 2013). This material consists of heavily oxidized proteins that un-
dergo various biochemical modifications and form cross links and finally
a scaffold that is non-degradable by proteolysis (Höhn & Grune, 2013;
König et al., 2017). Oxidized lipids, carbohydrates and metals are added
during this process. Lipofuscin is a very resilient material since it was ex-
tracted and detected (Rizou et al., 2018) in bone remains in the proximity
of a fossil cranium [Apidima 1 (LAO1/S1)], of an estimated age of 160.000
years (Fig. 8). Impaired proteostasis in senescent cells is a frequent trait
and occurs at various levels. mTOR activation drives increased protein
biosynthesis while autophagy down-regulation leads to accumulation
of misfolded/unfolded proteins (Schreiber et al., 2016). The latter is
boosted by inhibition of the 26S subunit of the proteasome due to
lipofuscin accumulation, which is an active material and produces ROS
(Gorgoulis et al., 2018; Höhn & Grune, 2013; König et al., 2017). Endo-
plasmic reticulum stress has also been implicated in excess of unfolded
proteins in senescent cells, triggering a reaction termed unfolded protein
response (UPR) (Fig. 1) (Pluquet, Pourtier, & Abbadie, 2015). Upon failure
of UPR to counteract prolonged or unresolved endoplasmic reticulum
stress cell death occurs (Pluquet et al., 2015). Of great interest, mitochon-
drial function and life cycle during senescence are also under regulation
by the mTOR/autophagy (mitophagy) interplay. In fact, mitochondria
seem to exert a critical role in the onset of the senescent phenotype
(Correia-Melo et al., 2016). mTOR activation increases mitochondrial
function and biogenesis while senescent cells accumulate dysfunctional
mitochondria, due to perturbed turnover of mitochondria (mitophagy).
This mitochondrial dysfunction (Senescence-Associated Mitochondrial
Dysfunction) is characterized by decreased oxidative phosphorylation
0

100

200

300

400

500

600

Blank

stin
U

yrarti br
A

Avera

Control

LAO1/S1

Blank

Fig. 8.Quantitative estimation of lipofuscin amounts extracted from bone remains in the proxim
novel, SentraGorTM based, methodology.
and increased endogenous ROS formation (Fig. 1) (Correia-Melo &
Passos, 2015; Lawless et al., 2012; Passos et al., 2007; Passos et al., 2010).

Extensive epigeneticmodifications form a specialized landscape that
characterizes the senescence phenotype (Moudry et al., 2016). Gain of
active histone modifications or loss of repressive histone marks in the
promoter of genes related to aging and senescence has been reported
(Shah et al., 2013). More specifically, H3K4me3 has been found
enriched at up-regulated senescence associated genes (eg SASP, anti-
proliferation and stress response genes) and is characteristically de-
pleted at down-regulated genes. In contrast, H3K27me3 demonstrates
the opposite pattern; it is lost at up-regulated “senescence” genes and
enriched in suppressed ones that are related to proliferation. These al-
terations result in the formation of areas enriched with H3K4me3 and
H3K27me3 (“mesas”) and areas depleted in H3K27me3 (“canyons”),
across the senescence genome. Mesas have been shown to localize at
lamin B1-associated chromatin domains (LADs) while canyons are
mainly located between LADs (Shah et al., 2013). Apart from LADs and
the organization of the inner side of the nuclear membrane, lamins are
also implicated in nuclear shaping and DNA replication (Gruenbaum &
Foisner, 2015). These molecules have recently gained an increased at-
tention since discontinuous nuclear lamina, due to loss of lamin B1
(Shah et al., 2013), has been proposed as new promising marker of se-
nescence (Fig. 1) (Munoz-Espin & Serrano, 2014; Salama et al., 2014).

Epigenetic regulation during senescence seems also to be mediated
by a class of enzymes termed sirtuins (SIRTs) that exhibit additional
metabolic and DNA repair functions (Tasselli et al., 2016). These factors
possess histone deacetylase or mono-ribosyltransferase activity and
are related to longevity in a species-specific manner (Ghosh & Zhou,
2015). Their down-regulation has been associatedwith aging and senes-
cence (Ghosh & Zhou, 2015; Giblin & Lombard, 2016). SIRTs mediate
deacetylation of lysine residues of histone tails increasing thus chroma-
tin condensation (Giblin & Lombard, 2016). This in turn negatively af-
fects accessibility of transcription factors and RNA polymerase II to
chromatin regions and alters gene transcription (Giblin & Lombard,
2016). Other chromatin modifications, such as DNA segments with
chromatin alterations reinforcing senescence (DNA-SCARS) or
SAHFs are often observed in certain genetic backgrounds and are
therefore neither sensitive nor specific. SAHFs are observed in the
frame of RAS induced senescence (Di Micco et al., 2011), while
their absence is evident in cells undergoing Cdc6 driven OIS
(Komseli et al., 2018). SAHFs formation is related to down-
regulation (“switch off”) of genes implicated in cell proliferation
 Control LAO1/S1

ge Lipofuscin levels

ity of a fossil cranium of an estimated age of 160.000 years [Apidima 1 (LAO1/S1)] using a



Table 1
List of markers/methods for senescent cell detection.

Marker/Method References

Large and flat morphology (Various
microscopical and staining
approaches)

(Hayflick & Moorhead, 1961;
Hernandez-Segura et al., 2018)

Lack of cell proliferation markers:
absence of Ki-67,
BrdU/EdU-incorporation, no colony
formation

(Hayflick & Moorhead, 1961;
Hernandez-Segura et al., 2018)

Lack of response to growth signals (Lopez-Otin, Blasco, Partridge, Serrano,
& Kroemer, 2013)

Resistance to apoptosis: BCL family
members ( Bcl-2, Bcl-w, or Bcl-xL)

(Hernandez-Segura et al., 2018)

p53 (Lopez-Otin et al., 2013)
ARF (Lopez-Otin et al., 2013)
CDKIs (p16INK4a, p15INK4B,
p21WAF/CIP1, p27KIP1)

(Lopez-Otin et al., 2013)

DDR markers (ATM, 53BP1, γH2AX,
MBS1, CHK2)

(d'Adda di Fagagna, 2008).

Lamin B1 reduction (Shimi et al., 2011)
DEC1 (BHLHE40) (Collado et al., 2005)
DCR2 (TNFRSF10D) (Collado et al., 2005)
PML nuclear bodies (Lopez-Otin et al., 2013)
SAHF (senescence-associated
heterochromatic foci)/markers
(HP1-γ, H3K9me3)

(Hernandez-Segura et al., 2018; Narita
et al., 2003)

HMGA proteins (O'Sullivan & Karlseder, 2012)
TIF (telomere dysfunction-induced foci) (Takai, Smogorzewska, & de Lange, 2003)
TAF (telomere-associated foci) (Takai et al., 2003)
DNA-SCARS (DNA segments with
chromatin alterations reinforcing
senescence)

(Rodier & Campisi, 2011)

Cell surface proteins (DEP1, B2MG and
DPP4)

(Althubiti et al., 2014; Kim et al., 2017)

SA-β-gal (senescence-associated
β-galactosidase activity)

(Dimri et al., 1995)

Modified:
Modifications: chromogenic or
fluorescent (one or two-photon
fluorescence excitation) probes for the
visualization of SA-β-gal activity

(Debacq-Chainiaux et al., 2009; Lee
et al., 2014; Lozano-Torres et al., 2017;
Zhang et al., 2017)

Lipofuscin accumulation - Hybrid
histochemical/immunohistochemical
method

(Evangelou et al., 2017; Evangelou &
Gorgoulis, 2017; Georgakopoulou et al.,
2013)

SASP factors, ligands and receptors
(IL-1a, IL-6,and IL-8, CCL2 and
metalloproteinases)

(Hernandez-Segura et al., 2018;
Kuilman & Peeper, 2009)

Quantitative identification based on a
combination of SA-β-gal and molecular
marker staining with flow cytometry
and high content image analysis

(Biran et al., 2017)

Senescence chips for
ultrahigh-throughput isolation and
removal of senescent cells

(Chen, Mao, Snijders, & Wang, 2018)
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(Munoz-Espin & Serrano, 2014; Salama et al., 2014). Non-coding
RNAs have also been implicated in the epigenetic regulation of the
senescent phenotype (Komseli et al., 2018).

Interestingly, chromatin fragments extruded from the nucleus into
the cytoplasm are targeted by the lysosomal/autophagy machinery
(Ivanov et al., 2013). The functional role of cytoplasmic chromatin is
generally unclear, however recent evidence suggest that it may serve
as a cytoplasmic “danger signal” to alarm the immune system (Dou
et al., 2017). It has been shown that the cytoplasmic chromatin- cyclic
GMP-AMP synthase (cGAS) - Stimulator of interferon genes (STING)
pathway is involved in expression of pro-inflammatory genes in cancer
cells that promote senescence (Glück et al., 2017; Yang, Wang, Rena,
Chen, & Chen, 2017).

Cellular senescence in culture is typically accompanied by specific
morphological alterations (Fig. 1), which rely on cytoskeleton rear-
rangements (Cormenier et al., 2018; Druelle et al., 2016). Of note,
these traits are less prominent in vivo. Rearrangement of the cytoskele-
ton, specifically of the vimentin filaments, through the ATF6a- branch of
the UPR pathway, seems to contribute to the senescence-associated
shape alterations (Cormenier et al., 2018; Druelle et al., 2016). Addition-
ally, not only cell size and shape modifications, but also plasma
membrane composition changes occur during senescence (with the
more prominent being the upregulation of caveolin-1), thus affecting
inter-cellular communication and intra-cellular signaling pathways
(Althubiti et al., 2014; Hernandez-Segura et al., 2018; Ohno-Iwashita,
Shimada, Hayashi, & Inomata, 2010).

3. Senescence detecting methods

The lack of a reliable marker to detect senescent cells, particularly
in vivo, has been until recently a critical limiting factor in the “senescent
field”.While in vitro, theirmorphological features (large,flat, vacuolated
and multinucleated) can help in their recognition, these characteristics
are quite impossible to spot in vivo (Munoz-Espin & Serrano, 2014).
Since the discovery of senescence a number of markers have been
used for their identification (Table 1). However, most of them are also
implicated in non-senescent cellular programs, while the specificity of
the applied methods is questionable (Hernandez-Segura et al., 2018).

The assay traditionally used for detecting cellular senescence, the
SA-β-gal activity, identifies as already mentioned the increased activity
of lysosomal β-D-galactosidase in senescent cells in conditions of sub-
optimal pH (pH: 6.0) (Dimri et al., 1995; Georgakopoulou et al., 2013;
Munoz-Espin & Serrano, 2014). Its foremost limitation is the require-
ment of fresh tissue to retain enzymatic activity, rendering it un-
applicable in archival (Formalin Fixed Paraffin Embedded) material,
which represents the vast majority of tissues stored in Pathology and
Research laboratories (Debacq-Chainiaux, Erusalimsky, Campisi, &
Toussaint, 2009; Rodier & Campisi, 2011). Further drawbacks of the
SA-β-gal assay include false positive staining under certain cell culture
conditions, such as serum starvation and confluence, as well as false
negative results in cells that fully undergo senescence, but may not ex-
hibit SA-β-gal activity (Munoz-Espin & Serrano, 2014; Salama et al.,
2014; Severino, Allen, Balin, Balin, & Cristofalo, 2000). Several modifica-
tions that use other chromogenic or fluorescent (one or two-photon
fluorescence excitation) probes for the visualization of SA-β-gal activity
(Lee et al., 2014; Lozano-Torres et al., 2017; Zhang et al., 2017) exhibit
similar disadvantages and their specificity in recognizing senescent
cells should be always confirmed with other senescence biomarkers
(immunohistochemical expression of p21WAF/CIP1, p16INK4a etc, or
GL13 positivity as described below).

To circumvent this obstacle, we recently generated a novel reagent
(GL13) and developed a hybrid histochemical/immunohistochemical
method that facilitates, with high specificity and sensitivity, in situ iden-
tification of senescent cells in any type of biological material including
archival tissues (Evangelou et al., 2017). GL13 (commercially available
as SenTraGorTM) is a biotinylated Sudan Black-B based chemical
derivative that strongly binds to lipofuscin, a well established property
of senescent cells (Evangelou & Gorgoulis, 2017; Georgakopoulou
et al., 2013). The method provides the major advantage of co-
visualization with other markers; thus potentially unrevealing new
players involved in imposing senescence (Evangelou et al., 2017;
Komseli et al., 2018).

4. Clinical relevance - role of senescence in cancer

Our knowledge regarding the role of cellular senescence in various
age-related diseases stems mainly from in vitro studies, due to the lack
of available in vivo detection systems, as mentioned earlier. The
in vitro settings were conducted in isolated cells derived from experi-
mental models and clinical panels. The main conclusion drawn by
these reports is that senescence exerts a bimodal behavior, beneficial
or detrimental. Favorable effects have been related to the attenuation
of liver fibrosis in cirrhotic models, the reduction of skin scarring and
oral fibrosis, the mitigation of renal fibrosis upon urethral obstruction
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or ischemic kidney injury, the limitation of cardiacfibrosis aftermyocar-
dial infarction, the restriction of atherosclerotic plaque formation, and
pulmonary hypertension (Munoz-Espin & Serrano, 2014). Conversely,
adverse effects of senescence have been associated with other clinical
entities described in Table 2.

In cancer the dual behavior of senescence is also evident. In early
stages it operates as a tumor barrier, in response to activated oncogenic
insults (Gorgoulis et al., 2018; Halazonetis et al., 2008; Komseli et al.,
2018). Apart from cell proliferation blockage, senescent cells secrete
SASP factors that contribute to tumor suppression in a paracrine
manner by recruiting cells of the immune system (Gorgoulis &
Halazonetis, 2010; Kang et al., 2011; Pateras et al., 2015). If senescent
cells are not cleared timely, they can facilitate in the development of
an immunosuppressive and protumorigenic microenvironment via
SASP, promoting cancer progression (Gonzalez-Meljem et al., 2017;
Gonzalez-Meljem, Apps, Fraser, & Martinez-Barbera, 2018; Jackson
et al., 2012; Krtolica, Parrinello, Lockett, Desprez, & Campisi, 2001;
Kuilman, Michaloglou, Mooi, & Peeper, 2010). In addition, SASP in
treated cancers seems to be implicated in tumor recurrence and adverse
prognosis. In this context, therapy induced senescence has also been
linked to cancer cell stemness (Senescent Associated Stemness, SAS)
that exerts its deleterious, highly aggressive growth potential upon es-
cape from cell-cycle inhibition, driving tumor relapses (Milanovic
et al., 2018).
Table 2
Highlighting cellular senescence as a potential contributor to the pathogenesis of numerous age
lular senescence as the causal factor of these pathologies is far from being well-documented sin
effect of senescence may be beneficial instead of detrimental (See Munoz-Espin & Serrano, 201

Disease Senescence phenotype and
pathological markers

Kidney disease Renal senescent cell numbers are increased in response to injury in
experimental animal models and human renal diseases, (including I
diabetic nephropathy, glomerular disease), and is associated with de
contributing to histopathological and functional deterioration.
Senescence decreases renal transplantation success.

Heart failure Endothelial cell senescence promotes the typical hemodynamic and
of heart failure with preserved ejection fraction in an aging mouse m

Atherosclerosis Senescent intimal foam cells accumulate in atherosclerotic lesions a
drivers of atheroma formation, whereas leukocyte senescence is inv
progression of atherosclerotic plaque.

Diseases of the
aorta

Endothelial cells and vascular smooth muscle cells from patients wi
aneurysm exert phenotypic features similar to those observed in sen
Senescence of endothelial cells and vascular smooth muscle cells in
vascular stiffness.

Metabolic
syndrome

Vascular endothelial cell senescence induces systemic metabolic dys
Endothelial cell senescence suppresses skeletal muscle metabolism,
glucose intolerance.

Type 2 diabetes Senescent cells is associated with the pathogenesis of type 2 diabete
through direct impact on pancreatic β-cell function, SASP-mediated
involvement in adipose tissue dysfunction. From the opposite point
the pathology, such as high circulating glucose, altered lipid metabo
hormone axis perturbations, can promote senescent cell formation.

Osteoarthritis Senescent cells have been shown to accumulate in cartilage and syn
surgically induced osteoarthritis.
Senescence load has been shown to correlate with disease severity in
osteoarthritis.
Senescent chondrocytes are able to affect the surrounding microenv
determine a senescent status of cartilage precursor cells, and promo
when transplanted in healthy joints.

Liver disorders The risk of developing non-alcoholic fatty liver disease is predicted b
senescent hepatocytes.
Hepatocyte senescence correlates with severity of non-alcoholic fatt
Cellular senescence drives hepatic steatosis by inducing mitochondr
resulting in reduced fat metabolism.

Diseases of the eye Senescence has been involved in the pathogenesis of cataracts, macu
and glaucoma.

Pulmonary fibrosis Fibrotic lung disease is mediated, in part, by senescent cells.
Age-related
cachexia

Senescent cells prevent adipocyte differentiation and contribute to a
loss of adaptive thermogenic capacity and metabolic dysfunction.

Neurodegenerative
diseases

Astrocytes, the major cell division-competent cell type in the brain,
in vivo in humans. Senescent astrocytes are more prominent in both
diseases (Parkinson disease, Alzheimer disease) and aging.
In view of the above mentioned “dark side” of senescence, identify-
ing cancer types that harbor such cells is of outmost importance.
Exploiting the advantages of GL13 we identified for the first time
in vivo senescent cells in two distinct malignant entities, namely Hodg-
kin lymphoma and LCH (Table 3). The cHL is one of the most frequent
lymphomas in the Western world, with an estimated incidence of
8500 new cases and 1050 deaths in 2018 in the US. It is a highly curable
disease, however, 20-30% of patients eventually relapse and half of
them ultimately die from disease-related causes (Broeckelman,
Angelopoulou, & Vassilakopoulos, 2016; Vassilakopoulos & Johnson,
2016). cHL is characterized by rare tumor cells, the Hodgkin and Reed-
Sternberg (HRS) cells that evolve in an abundant reactivemicroenviron-
ment. Interestingly, an increased number of senescent HRS was de-
tected in a subset of examined primary cHL cases (Figs. 4–5, Suppl
Tables 1–3). Moreover, high percentage of senescent HRS cells (N10%
or N15%) was related to unresponsiveness not only to first-line but
also to salvage chemotherapy, as evident from decrease in Hodgkin-
lymphoma-specific-survival (HLSS) after failure (Figs. 4–5, Suppl
Tables 1–3). Two putative scenarios could explain this association.
First, senescent HRS cells in primary lesions, via SASP may foster the
tumor microenvironment leading to tolerance to currently available
chemotherapeutic strategies (Gordon & Nelson, 2012; Schosserer,
Grillari, & Breitenbach, 2017). Such a process has also been reported
for TIS and could be a potential mechanism of relapses after the initial
-related diseases (cancer is not included herein). Nevertheless, the characterization of cel-
ce several important questions remain to be addressed. Indeed, in some cases the overall
4).
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Table 3
Clinical entities in which senescence has been recognized by applying the SenTraGor methodology.

Entity Cellular type Referencess

Normal Thymic involution Senescent Thymic Epithelial cells Barbouti et al., 2018
Benign Nevi Senescent Nevous Cells Evangelou et al., 2017
Preneoplastic Pancreatic Intraepithelial Senescent Epithelial Cells Fig. 7

Lesions (PanINs)
Malignant Classical Hodgkin Lymphoma (cHL) Senescent Hodgkin & Reed-Sternberg cells Fig. 4, Fig. 5

Langerhans cell Histiocytosis Senescent Neolastic Histiocytes Fig. 6
Post Therapeutic Irradiated Laryngeal carcinomas Senescent Stromal Cells Evangelou et al., 2017

Breast cancers following chemotherapy Senescent Stromal Cells Evangelou et al., 2017
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cycle of chemotherapy (Ewald et al., 2010). Secondly, senescent HRS
cells can eventually escape from senescence and re-enter the cell
cycle, having acquired anaggressive features and resistance against che-
motherapy. We described such a phenomenon recently in two distinct
settings. We showed that oncogene-driven genomic instability, taking
place during the OIS phase, shapes the genetic landscape favoring the
emergence of a subpopulation of malignant cells that “escape” from se-
nescence harboring more deleterious characteristics (Galanos et al.,
2016; Galanos et al., 2018; Komseli et al., 2018).

It appears that under certain circumstances OIS skews cancer cell
plasticity towards the direction of more aggressive features, as is also
the case of senescence associated stemness that follows therapeutic in-
terventions (Milanovic et al., 2018). Regardless of the underlyingmech-
anism, the potential aggressive role of senescent HRS cells in cHL and
the use of seno-strategies should be taken, from now on, into consider-
ationwhennew therapeutic approaches are designed to dealwith unre-
sponsive relapsed cases (Chang et al., 2016). Similarly, senescence could
play a role in the unresponsiveness to BRAF-V600E inhibitors adminis-
trated to treat LCH, a dendritic cell neoplasm with a strong inflamma-
tory component (Abla & Weitzman, 2015). Indeed, we observed in a
few primary cutaneous LCH lesions the presence of GL13(+) neoplastic
cells (Fig. 6, Table 3). This novel finding needs further examination to
the direction of developing new therapeutic interventions that will
combine inhibitors of the BRAF pathway complemented by senolytic
agents, for patients with refractory or multiply-relapsed LCH (Abla &
Weitzman, 2015).

5. Pharmacological interventions that target senescence

The discovery of senotherapeutic drugs represents a developing and
highly promising field of current research for new therapies. As exten-
sively discussed in the previous sections, strategies that aim in reducing
the burden of senescent cells of an organism are extremely likely to con-
tribute in many favorable ways to protection against a wide array of se-
rious pathological states and age-related abnormalities. Of equal
interest are alternative approaches that do not aim directly at survival
of senescent cells but at SASP involving signaling modules and pro-
inflammatory factors that mediate many of the undesirable effects of
aging and act as senescence promoters. This distinction gives rise to
the classification of senotherapeutic molecules into senolytics, i.e. com-
pounds that preferably induce death of senescent cells in a selective
manner and senomorphics, i.e. molecules that can inhibit SASP and sup-
press senescence indirectly.

As this field of research is relatively young, knowledge on putative
molecular targets or mechanisms of action concerning small molecules
with senotherapeutic properties is currently limited. However, the
existing studies have already provided convincing evidence that both
strategies of either eliminating aged cells or suppressing senescence
through SASP inhibition are equally feasible. As such, these pioneering
research efforts have established senotherapeutics as a particularly
vivid and exceedingly attractive field of contemporary drug discovery.
At this point, it is interesting to note that so far in the discovery of
small molecules with senotherapeutic properties, several cutting-edge
concepts and technologies related to drug discovery such as the
target-based approach and reverse pharmacology, sophisticated chem-
ical biology techniques, drug repurposing and bioinformatics have been
successfully implemented alongside with more traditional methodolo-
gies such as production of transgenic animals, cell-based assays and
in vivo disease models. The chemical structures of compounds that are
currently known to show senotherapeutic properties are summarized
in Fig. 9.

An elegant example of target validation and subsequent identifica-
tion of compounds with senolytic properties has been reported in a se-
ries of rationally designed studies led by the research group of J.
Kirkland in Mayo Clinic, USA. A hypothesis was stated that survival of
senescent cells is heavily dependent on specific genes implicated in
pro-survival and anti-apoptotic pathways and that these signalingmod-
ules could be targeted to facilitate clearance of senescent cells in a selec-
tive fashion over normal cells. By implementing the advanced ATTAC
genetic methodology, the researchers have created transgenic animals
(INK-ATTAC mice) where the senescence biomarker p16INK4a promoter
was coupled to a ‘suicide’ gene triggering caspase-dependent apoptosis
upon dimerization of the protein it encodes (Baker et al., 2011). Imple-
mentation of this technology permitted the selective elimination of cells
that are p16INK4a-positive by administration of the small molecule
AP20187 which acts as a dimerization inducer of the ATTAC-encoded
protein. Treating the transgenic animals with AP20187 led to increased
lifespan, providing strong evidence that removal of aged cells can in-
deed have a favorable impact on living organisms. The findings of this
study were fully confirmed by a later report showing that clearance of
p16INK4A-positive cells not only could extend lifespan but, most impor-
tantly, enabled a side-effect free protection in the organism of trans-
genic mice from age-related deterioration and delay of tumorigenesis
(Baker et al., 2016). Having shown that inhibiting a key pro-survival
pathway succeeded in eliminating senescent cells in vivo, the re-
searchers moved forward and tried to probe for the validity of an
array of potential drug targets, as these were suggested by genetic
data and studies of differential gene expression between senescent
and normal cells (Zhu et al., 2015). By following a genetic interference
approach, siRNA was used for the sequential knockdown of each of 39
previously identified candidate genes. The effects of RNA interference
in cell proliferation were combined with a bioinformatics analysis for
determining possible interactions among the candidate genes. The net-
work analysis guided selection of the most promising target genes that
affected viability of senescent cells in a differential manner with respect
to non-senescent cells. The products of these genes were subsequently
targeted in vitro by a collection of small molecules with well-known
modulating activities and the first compoundswith senolytic properties
identified by this rational approach were dasatinib and quercetin.

Dasatinib (Sprycel®) is an ATP-competitive kinase inhibitor cur-
rently in clinical use (Das et al., 2006). This widely used therapeutic
molecule targets several protein tyrosine kinases including BCR/Abl
and c-Kit but also members of the Scr family such as SRC, LYN, FYN
and LCK (Han, Schuringa, Mulder, & Vellenga, 2010; Keating, 2017). In-
terestingly, dasatinib has been described as an inhibitor of the Eph re-
ceptors (Li et al., 2010). Ephrins are the natural ligands of Eph
receptors and two ephrins (EFNB1 and EFNB3)were gene products suc-
cessfully identified by the aforementioned combined transcriptomic



Fig. 9. Structures of themost studied compoundswith an established senotherapeutic potential.While classifying themolecules between senolytics and senomorphicswas avoided due to
the limited knowledge that is currently available regarding the exact underlying mechanisms and their possible overlaps, compounds were partitioned in naturally occurring or
endogenous compounds and derivatives (inlet A), investigational chemical tools (inlet B) and clinically used drugs (inlet C).
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and informatics analysis as members of a critical pro-survival pathway
in senescent cells. Administration of dasatinib reduced viability of se-
nescent cells in vitro and the effects were reproduced in vivowhere alle-
viation of aging phenotypes was additionally observed in treated
animals. The second newly discovered senolytic compound by the
same researchers was quercetin, a widespread natural product from
the class of flavonoids (Ay et al., 2016). Quercetin is a polyphenol with
potent antioxidant activity (Jaffe & Mani, 2014), abundant in natural
sources related to nutrition. Like most flavonoids (Middleton Jr,
Kandaswami, & Theoharides, 2000), quercetin is characterized by a
multitude of biological activities (Wang et al., 2016) including those of
cancer prevention (Schnekenburger & Diederich, 2015; Shankar,
Antony, & Anto, 2015) and kinase inhibition (Hubbard et al., 2003;
Hubbard, Wolffram, Lovegrove, & Gibbins, 2004). Most interestingly,
quercetin has been identified as a modulator of several signaling path-
ways involved in proliferation such asNF-kB, PI3K/Akt,mTOR and estro-
gen receptor signaling (Feitelson et al., 2015; Maggiolini et al., 2004;
Russo et al., 2014; Williams, Spencer, & Rice-Evans, 2004). In this first
screen for senolytic molecules, the transcriptomic analysis indicated in-
hibition of kinase PI3Kδ as a potential mechanism of the observed
senolytic action for quercetin (Zhu et al., 2015). The flavonoid showed
a similar overall activity against senescent cells both in vitro and
in vivo as dasatinib. Of interest is a follow-up study providing sound ev-
idence regarding the drastic effects of the combined administration of
dasatinib and quercetin in mitigating physical dysfunction and increas-
ing survival ofmice thatwere either normally aged or transplantedwith
senescent cells (Xu et al., 2018). However, the efficiency of the twomol-
ecules varied considerably between different cell types. Results showing
cell type dependence of senolytic effects are quite abundant in studies
dealing with senotherapeutics and to our view such findings further
emphasize the need for a more complete and profound understanding
of the mechanisms through which these compounds exert their effects.
For example, it might be interesting to investigate whether the activity
against senescent cells might be responsible, at least in part, for the ex-
cellent clinical efficacy of dasatinib against several types of cancer
(McCormack & Keam, 2011). Or, given that in many cases the observed
phenotype is a collective effect originating from interactionswithmany
different signaling pathways and molecular targets, it could be worth
investigating whether PI3Kδ is indeed the main target for flavonoids
like quercetin in senescent cells. The activity of quercetin toward the β
and γ isoforms of PI3K is reported to be comparable with that of δ
(Navarro-Núñez et al., 2009) and this might indicate that inhibition of
other kinases or targets fromdifferent protein familiesmay also account
for the observed senolytic effects of the flavonol. In addition to the over-
all complexity of the studied systems, the reported activity of quercetin
toward senescence underlines the paramount importance of selecting
themost appropriatemodel system for deriving valid and consistent re-
sults. For example, a separate group of researchers evaluated quercetin
and hyperoside, a simple 3-O-glycoside of quercetin, in a different ex-
perimental setting based on a cell line that was the adult analogue of
the one used in the previous study of Zhu et al. (2015) and they failed
to reproduce the senolytic effect of the flavonol (Hwang, Tran,
Rebuffatti, Li, & Knowlton, 2018). It should be stressed that in many
studies reporting senotherapeutic molecules, the authors admit that
ruling out off-target effects was not trivial and that designing such ex-
periments could be a very challenging endeavor (Zhu et al., 2015). To
this direction, the additive effects initially reported for dasatinib and
quercetin and later for other senolytics as well, probably indicate that
modules and networks that are cell-type dependent contribute to the
beneficial phenotypes of senotherapeutics by poorly understoodmodes.

Right after dasatinib and quercetin, the next senolytic compound to
emerge was navitoclax (or ABT-263), a small molecule developed by
Abbott as an inhibitor of the BCL-2 family of proteins regulating apopto-
sis (Tse et al., 2008). The compound is a disruptor of the interaction
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between BCL-2 proteins and their endogenous inhibitory regulators,
namely BH3 domain-containing proteins, and in this sense navitoclax
is regarded as a protein-protein interaction inhibitor (PPI). However,
its low selectivity which resulted in severe toxicity has hindered further
clinical evaluation of the compound as a therapeutic drug (Garland,
Benezra, & Chaudhary, 2013). The capacity of navitoclax to selectively
eliminate senescent cells was reported simultaneously by two groups
(Chang et al., 2016; Zhu et al., 2016). In the first study a small molecule
collection including bioactive compounds and drugs was subjected to a
phenotypic screening, while in the second a target-based approachwas
utilized and the BCL-2 family was selected on the basis of the above
mentioned transcriptomic analysis indicating that this particular pro-
survival pathway was vital for senescent cells. The same researchers
showed that themain targets of navitoclax relatedwith the senolytic re-
sponse were not BCL-2 itself but BCL-W and BCL-XL and this was soon
confirmed by an independent study (Yosef et al., 2016). Since its estab-
lishment as a senolytic, navitoclax has been extensively used as a chem-
ical tool to study the mechanisms of aging in a series of model systems
(Chang et al., 2016; Demaria et al., 2017; Kim et al., 2017; Pan et al.,
2017). This finding prompted a second round of evaluations withmole-
cules that are selective BCL-XL inhibitors and three additional senolytics
were identified, compounds A1331852 and A1155463 (Zhu et al., 2017)
and ABT-737 (Yosef et al., 2016). The senolytic potential of the first two
compounds was validated in vitrowhereas the activity of ABT-737 was
measured in vivo using two independent senescence models. Notably,
ABT-737 shares a functional similarity with navitoclax as both mole-
cules are PPI inhibitors that mimic the natural BCL-2 inhibitory motif
BH3. The compound has been evaluated for its apoptotic properties in
specific cancer cells and it has demonstrated a particularly interesting
activity profile (Del Gaizo Moore et al., 2007; Konopleva et al., 2006;
van Delft et al., 2006).

Along with A1331852 and A1155463 an additional member of the
flavonoid family with senolytic properties was discovered, namely
fisetin (Zhu et al., 2017). In this case the authors came to the conclusion
that themode of action offisetin is similar to that of quercetin and this is
quite reasonable since the two flavonols differ by a single hydroxyl
group at position 5 of the chromone scaffold. As a flavonoid, fisetin is
a potent antioxidant (Naeimi & Alizadeh, 2017) but in a similar fashion
to quercetin, a number of additional biological activities and molecular
targets have been reported for it. More specifically, the flavonoid has
been shown to interact among others with topoisomerases and cyclin-
dependent kinases, signaling proteins that belong to the NF-kB, PPAR
(peroxisome proliferator-activated receptor), PARP1 (poly (ADP-ri-
bose) polymerase 1) and PI3K/Akt/mTOR pathways and epigenetic
modules (Adhami, Syed, Khan, & Mukhtar, 2012; Deeba, Vaqar,
Mohammad Imran, & Hasan, 2013; Esselen & Barth, 2014; Gupta et al.,
2014; Kim, Lee, & Lee, 2014; Lu, Chang, Baratte, Meijer, & Schulze-
Gahmen, 2005; Mathers, Strathdee, & Relton, 2010; Webb & Ebeler,
2004). In addition, fisetin has been attributed with considerable cancer
chemopreventive properties (Lall, Adhami, & Mukhtar, 2016), anti-
inflammatory activity (Khan, Syed, Ahmad, & Mukhtar, 2013) and
delay of age-related implications in the central nervous system
(Maher, 2015). In light of this multitude of biological activities, it may
be reasonably hypothesized that several of the health promoting prop-
erties assigned to fisetin, quercetin and possibly to other members of
the flavonoid family in the future are related to a good extent with
their activities against senescence and SASP. To this direction, more de-
tailed studies are needed to validate additional molecular targets of fla-
vonoids and facilitate amore complete evaluation of the roles that those
multifaceted natural products play in preserving a state of good health
and delaying aging.

Another natural compoundwith senolytic activity is piperlongumine
(Wang et al., 2016). Piperlongumine is an alkaloid found in trees of the
genus Piper and it was identified as a senolytic by using an identical ex-
perimental setting that led to the discovery of navitoclax. The natural
product has been studied in the past as a potent inducer of apoptosis
in cancer cells and in this case, the mechanism of action was the forma-
tion of ROS (Raj et al., 2011).With respect to senescence, piperlongumine
along with a number of structurally related analogues were evaluated as
chemical inducers of apoptosis in aged cells. Although the set of ana-
logues was insufficient large for sustaining systematic structure-activity
relationships observations, it though provided indications that the
senolytic action was independent from ROS, yet without offering ade-
quate data for any alternate hypothesis to be stated. Nonetheless, a re-
cent report presented evidence that piperlongumine can induce
apoptosis in cancer cells throughmodulation of the NF-kB pathway, pro-
viding indications of common modalities between the potential mecha-
nisms of action for flavonoids and alkaloids such as piperlongumine
(Zheng et al., 2016).

A totally different class of drug candidates for which senolytic prop-
erties have been discovered are inhibitors of heat shock protein HSP90.
The heat-shock proteins and particularly HSP90 are molecular chaper-
ones widely studied as drug targets (Celine et al., 2007; David & Neal,
2006). As a continuation of the rational approach initially adopted by
the researchers who identified the first senolytics, a screening platform
based on a SA-β-gal assaywas established and subsequently utilized for
evaluating compounds on a medium-throughput fashion (Fuhrmann-
Stroissnigg et al., 2017). A collection of small molecule autophagy regu-
lators was screened and at least 15 compounds that span 11 different
target classes were identified for their activity as senescence modula-
tors. Among them, the most promising in terms of activity and specific-
ity against normal cells were the HSP90 inhibitors geldanamycin and
tanespimycin (17-AAG). Geldanamycin is a natural antitumor antibiotic
isolated frombacteria of the Streptomyces genus and 17-AAG is one of its
semisynthetic analogues previously developed in an effort to limit toxic-
ity of the natural lead (Dimopoulos, Mitsiades, Anderson, & Richardson,
2011; Ochel, Eichhorn, & Gademann, 2001; Singh, Genilloud, & Peláez,
2010). Tanespimycin has undergone clinical trials as an anticancer
drug by Bristol-Myers Squibb, but they were concluded unsuccessfully
(Sharp, Jones, & Workman, 2014). Both are macrocyclic lactams that
act as HSP90 inhibitors by binding its N-terminal ATP pocket (Roe
et al., 1999). An interesting aspect of their evaluation as senolytics is
that in this study, evidence is provided showing that the senolytic activ-
ity of HSP90 inhibitors is not as much cell type-dependent as the effects
observed for other compounds targeting aged cells. Regarding the po-
tential mechanism of senolytic action for HSP90 inhibitors, the re-
searchers suggest that it is likely related to down-regulation of the
PI3K/Akt signaling pathway. In this respect, HSP90 inhibitors act by a
mechanism closely related to senolytics such as quercetin which are
thought to interfere with the pathway of PI3K.

An inspiring aspect of senolysis as a potential therapeutic mecha-
nism is underlined in one of the most recent studies reporting such a
drug (Samaraweera, Adomako, Rodriguez-Gabin, & McDaid, 2017). In
this study, the senolytic potential of the clinically used non-selective
histone deacetylase inhibitor panobinostat (Farydak®) was demon-
strated and the synergistic therapeutic effect observed in a co-
treatmentwith taxol was shown to bemediated by the senolytic poten-
tial of panobinostat. Most importantly, post-treatment with the histone
deacetylase inhibitor was determined to be a more efficacious thera-
peutic approach than repeat dosing of treatment with standard drugs
such as taxol or cisplatin. Based on these findings, the authors suggest
that panobinostat can be used in a repurposing concept as a drug selec-
tively targeting persistent senescent cells which arise following taxol or
cisplatin therapy.

As already mentioned, senomorphics are a different class of mole-
cules that can interfere with senescence in an indirect way by affecting
the SASP. These molecules have no effect on proliferation of senescent
cells but they are implicated in the expression of factors that regulate
specific senescence biomarkers. Interestingly,flavonoids structurally re-
lated with quercetin and fisetin such as apigenin or kaempferol have
been shown to act as senotherapeutics through SASP inhibition (Lim,
Park, & Kim, 2015). In this study, a number of natural as well as
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synthetic flavonoids were examined and although the compounds
could not influence the progress of bleomycin-induced senescence as
measured by specific markers, they nonetheless demonstrated notable
inhibition of certain components of SASP such as in IL (interleukin)-6,
CXCL1(chemokine C-X-C motif ligand 1) and GM-CSF (granulocyte-
macrophage colony-stimulating factor) in vivo. A number of structure-
activity relationships were determined concerning the substitution of
flavonoid scaffold and SASP inhibitory activity, while the effect on se-
nescence phenotype was partly attributed to interference of the com-
pounds with the NF-kB pathway and more specifically the NF-kB p65
subunit and the NF-kB inhibitor IkB (inhibitor of kappa B). Of note, in
this study quercetin was found moderately active but not to the extent
of apigenin and kaempferol.

Rapamycin (Rapamune®) is a selective inhibitor of the mTOR ki-
nase, a signaling molecule with a variety of key functions involved
with cell proliferation and survival (Ballou & Lin, 2008). Rapamycin is
a natural macrolide acting as an allosteric ligand for mTOR and it is
mainly used in clinical practice as an immunosuppressant (Li, Kim, &
Blenis, 2014). It is isolated from Streptomyces strains and it comprises
a prototype inhibitor for this particularly promising drug target.
Concerning aging, rapamycin has been attributed with considerable
lifespan extension properties in model systems (Arriola Apelo &
Lamming, 2016) while it has been described as a potent suppressor of
replicative senescence in rodent embryonic cells (Pospelova et al.,
2012). Toprobe for the effects ofmTOR inhibition on senescence, in a re-
cent study researchers have used cell-based model systems and in vivo
experiments to show that rapamycin activity on senescence is corre-
lated with suppression of SASP and this result is mediated by an Nrf2
(nuclear factor E2-related factor 2)-independent mechanism (Wang
et al., 2017). In this aspect, it is interesting to note that Nrf2 is regarded
a crucial pro-longevity signaling pathway (Sykiotis & Bohmann, 2008).
Yet in the same study, the direct effects of the mTOR inhibitor against
senescence as determined by senescence-related biomarkers such as
p21WAF/CIP1 were found to be Nrf2-dependent, thus revealing for one
more time the complexity of mechanisms underlying maintenance
and propagation of senescence. The activity of rapamycin against SASP
has been also shown to correlate with downregulation of IL-6 but
most importantly with inhibition of IL-1α translation (Laberge et al.,
2015). A notable conclusion confirmed by both studies of Wang et al.
and Laberge et al. where rapamycin was used is that the studied
mTOR inhibitor has the capacity to inhibit senescence but it cannot in-
vert the condition.

Inhibiting the JAK/STAT pathway is an alternative route thanmay be
proven beneficial for senescence. By using JAK inhibitors such as
ruxolitinib (Jakafi®), researchers demonstrated that a beneficial effect
on SASP could be obtained by targeting JAK kinases (Xu et al., 2015).
While treatment with JAK inhibitors could not reduce senescence, it
though resulted to a considerable decrease of systemic inflammation
in aged animals and contributed into improving age-related dysfunc-
tions and alleviating frailty. Interestingly, by taking advantage of the
availability of inhibitors that are selective against different kinases of
the JAK group, the researchers specifically identified JAK1/2 as the key
pathway members that mediated SASP alleviation. In a continuation of
this study, the same group showed that JAK inhibition could exert its
protective effect against senescence by limiting excretion of activin A,
a signaling protein facilitating SASP that increases with aging (Xu
et al., 2015). In light of the pronounced contribution of kinases such as
JAK, IkB and mTOR in senescence, efforts to identify modules of un-
known contribution to senolytic response within the kinome can be of
great value in accelerating both drug repurposing and medicinal chem-
istry studies. In one such case (Ferrand et al., 2015) a range of kinases
with pro-senescence properties was identified and notably, most of
the enzymes were shown to exert their functions through activation
of an NF-kB-dependent transcriptional cascade.

In the recent past, several studies have correlated the antidiabetic
drug metformin (Glucophage®) with beneficial effects on aging and
life span extension (Barzilai, Crandall, Kritchevsky, & Espeland, 2016).
This prompted the investigation of its possible effect on senescence.
By implementing a drug repurposing approach, metformin was indeed
identified as a compound with strong capacity to alleviate SASP
(Moiseeva et al., 2013). By interrogating the underlying mechanism,
the researchers found that suppression of SASP was mainly mediated
through inhibition of phosphorylation of the two catalytic subunits of
IKK (IkB kinase), namely subunitsα andβ. As IkB is an upstream activa-
tor of NK-kB, these results provide evidence that the activity of metfor-
min against the senolytic phenotype is independent of AMPK (AMP-
activated protein kinase) activation, the principal molecular target re-
sponsible for the clinically relevant, antidiabetic action of the drug
(Rena, Hardie, & Pearson, 2017). However, inhibiting AMPK is antici-
pated to affect mTOR in a negative way and this might also contribute
to thebeneficial result ofmetformin in aging. Thenotion thatmetformin
can indeed be considered as a senolytic drugwas greatly supported by a
recent study demonstrating its efficacy in protecting against senescence
using an in vivo setting based on the intervertebral disc degeneration
model (Chen et al., 2016). As a result of such compelling evidence that
a drug proven successful and already in clinical use can have a beneficial
effect on aging-related diseases, a study aiming at the approval of an ad-
ditional therapeutic indication for metforminwas launched in consulta-
tion with FDA (Food and Drug Administration) (Barzilai, 2017). The
study is called TAME (TargetingAgingwithMEtformin) and is an inspir-
ing example of how drug repurposing may contribute to the develop-
ment of new therapeutic approaches against cancer based on drugs
that are considered mild and generally safe (Sleigh & Barton, 2010;
Druzhyna et al., 2016; Patel & Patel, 2018; Datta, Kim, Mcgee, et al.,
2018).

Targeting SASP has been also attempted through another class of ap-
proved drugs, namely glucocorticoids. In a study utilizing a screening
assay based on human fibroblasts, a collection of clinically used drugs
was evaluated and a number of compounds were identified as potent
suppressors of the senescence phenotype (Laberge et al., 2012). The
most active molecules were found to be corticosterone and cortisol.
Nonetheless, in contrast to this finding a study focusing on dexametha-
sone, a highly relevant clinically used glucocorticoid, resulted in the
conclusion that the drug is not a senomorphic but an inducer of senes-
cence through SIRT1 inhibition and p53/p21WAF/CIP1 activation
(Poulsen et al., 2014). The authors extend this outcome to suggest that
this adverse function of dexamethasone might account for several of
its detrimental side effects. In either case, it is reasonable to think that,
unlikemetformin, an attempt to establish additional therapeutic indica-
tions for drugs of the class of steroids would be excessively risky. The
same might be true for small molecules that act as covalent inhibitors
of specific targets related to senescence or SASP propagation. For exam-
ple, while it could be intriguing to speculate that nitrofuran derivatives
which inhibit the stimulator-of-interferon genes (STING) protein could
possibly have a beneficial impact to SASP by downregulating inflamma-
tory cytokine production, the fact that these molecules act as irrevers-
ible inhibitors by attacking a specific transmembrane cysteine residue
renders them a highly challenging option in terms of balancing benefit
and risk (Haag et al., 2018).

Another interesting research effort deals with the evaluation of
mRNA splicing factors as potential targets for reversing the senescent
phenotype (Latorre et al., 2017). In this study, the researchers set
forth with the hypothesis that altering mRNA regulator processing
through small molecules could have an impact on the senescence phe-
notype. They used fibroblast cells and they selected the natural product
resveratrol as a lead compound on the basis of its well-known effects on
lifespan extension (Hubbard & Sinclair, 2014; Sinclair & Guarente,
2014). They synthesized a small collection of derivatives carrying a
polar substitution on the 4′ position of resveratrol with the aim to
examine the relation between its already known activity toward
SIRT1 (Borra, Smith, & Denu, 2005) and its possible senolytic effects.
Results provided evidence that resveratrol and its synthetic
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analogues were active in restoring splicing factor expression. This ef-
fect was coupled to improved telomere maintenance but most im-
portantly, it was found to be independent of SIRT1 activation. The
beneficial result of resveratrol on splicing factors was accompanied
by inhibition of several undesirable aspects of the senescence
phenotype.

Resveratrol is a polyphenol of the stilbene class and is abundant in
foods such as wine and fruits. Like flavonoids, resveratrol has demon-
strated an impressively wide variety of biological activities (Bhat,
Kosmeder, & Pezzuto, 2001; King, Bomser, & Min, 2006; Yang, Wang,
Zhu, Zhang, & Yan, 2015). The main health benefits attributed to this
natural compound concern cancer chemoprevention, protection against
cardiovascular diseases, anti-inflammatory activity and corrective ef-
fects on metabolism (Pollack & Crandall, 2013; Sarkar, Li, Wang, &
Kong, 2009). Resveratrol has been widely studied in the clinic and al-
though more research is still needed to fully elucidate its complex bio-
activity profile, existing data from clinical trials shows that it can
interfere with a number of critical pathways such as those of NF-kB,
IGF-1R/Akt/Wnt and PI3K (Berman, Motechin, Wiesenfeld, & Holz,
2017; Kundu, Shin, Kim, & Surh, 2006; Parekh, Motiwale, Naik, & Rao,
2011; Vanamala, Reddivari, Radhakrishnan, & Tarver, 2010). Regarding
NK-kB, it should be noted that resveratrol is a known inhibitor of IkB
(Holmes-McNary & Baldwin, 2000), a kinase previously encountered
as a possible target of metformin. As already mentioned, one of the
main targets of resveratrol is SIRT1, a member of the class III histone
deacetylases (Chung et al., 2010) which hold a seemingly important
yet still controversial role in the regulation of lifespan (Dang, 2014). In-
deed, in linewith the potentialmolecular targets of resveratrol, many of
its reported activities are related with beneficial effects on aging or
aging-related issues such as increased life and health span, resiliency
against age related stress factors and ultimately longevity (Huffman,
Schafer, & LeBrasseur, 2016). Whether a senolytic, a senomorphic or
an indirect senescence modulator, resveratrol has been moreover char-
acterized as a compound that can attenuate development of SASP in
human MRC5 fibroblasts by reducing the release of pro-inflammatory
cytokines without affecting senescence (Pitozzi et al., 2013) whereas
in another experimental setting based onmurine embryonic fibroblasts,
resveratrol showed no statistically significant effect on senescent cells at
all (Fuhrmann-Stroissnigg et al., 2017). In this study however, other
clinically used or investigational drugs such as loperamide and
niguldipine, respectively, have shown senomorphic properties while
there is a mention on unpublished data of a similar activity determined
for dopamine and serotonin antagonists.

However, as clearly stated in the previous sections, cellular senes-
cence is a condition characterized by a number of known beneficial
functions as well. The role of these functionalities in senolysis-based
therapeutic interventions is still controversial and remains to be further
clarified. For example, a class of compounds that can increase endoge-
nous p53 levels have been examined as senescence inducers in model
systems where such a condition was deemed as therapeutically signifi-
cant. Nutlins are potent stabilizers of p53, an effect achieved through in-
hibition between the tumor suppressor and its principal negative
regulator, namely MDM2 (Vassilev et al., 2004). Nutlin-3a is a known
senescence inducer and as such it has been used with success in an
in vivomodel of pulmonary hypertension to prevent or partially invert
the disease. The beneficial result was achieved by the p53 activation-
mediated induction of senescence on pulmonary-artery smooth muscle
cells, the increased expression of p21WAF/CIP1 and the subsequent cell
cycle arrest that accompanied the compound administration (Mouraret
et al., 2013). To summarize, the existing data collectively and clearly
suggest that a delicate balance exists between the various construc-
tive and detrimental effects of senescence in living organisms. This
aspect is of critical importance for the unbiased evaluation and safe
implementation of any therapeutic intervention that may arise in
the future based on small drug-like molecules. To this direction, the
need for a deeper understanding on the therapeutic limits posed by
the inherent complexity of aging mechanisms themselves is of ut-
most significance.

6. Conclusion and future perspectives

In this review, we describe the latest advances in the discovery of
drug-like molecules that demonstrate senescence-modulating proper-
ties and we present a critical overview of their experimental evaluation
as promising agents against age-related pathologies, with a particular
emphasis on mechanisms related to cancer. A thorough review of the
currently available knowledge on such compounds and their corre-
sponding modes of action concludes toward two principal but contrast-
ing notions. In terms of the underlying biology and future therapeutic
opportunities, the field is truly exciting and particularly promising and
we support this notion by reporting primary data relating to the impli-
cation of senescence in survival after failure of initial treatment inHodg-
kin lymphoma. However, when the advancement in the field of
senotherapeutics is examined from a point of view focusing on discov-
ery and validation of new drug targets and development of original bio-
active molecules, current progress seems awkwardly poor. Indeed,
almost all currently known senotherapeutics are either drugs, clinically
used or investigational, or widely studied natural products. The same is
true for the limited set of signaling pathways and individual modules
currently identified as the potential targets of these small molecules. It
is thus reasonable to suggest that at this specific time-point, the land-
scape of senescence-based therapeutics is rather underexplored and
as a result, research efforts still need to be intense, systematic and,
most of all, multi-disciplinary. Wide-scale omics studies along with
chemical biology approaches and development of chemical probes
may provide invaluable hints and starting points for identification and
validation of new targets. Subsequently, systematic iterative medicinal
chemistry efforts entailing computational exploration of chemical
space, synthesis of original scaffolds and implementation of high-
throughput biochemical or biophysical screening assays may afford
cell-active molecules for sustaining advanced biological evaluations. Fi-
nally, sophisticated in vivo experiments and systems pharmacologymay
advance our knowledge on aging to the point of supporting the clinical
evaluation of new first-in-class medications having as primary indica-
tion senescence therapeutics.

With respect to future research directions, two aspects are consid-
ered of key importance for enabling rapid progress in the field. The
first is to improve our capacity to precisely detect senescence in vivo,
as demonstrated by the revolutionary method that we generated. The
second is the development and establishment of models describing
the factors that govern the fate of stressed/damaged cells, including
tumor ones, toward either senescence or cell death. Both are anticipated
to greatly advance our current understanding of the mechanistic com-
plexity underlying senescence and also to facilitate rationalization of
thewhole process related to senotherapeutic drug discovery. More spe-
cifically utilizing SenTraGorTM could sustain development of experi-
mental systems and prospectively in clinical settings for evaluating
senotheraputic candidate compounds in a high-throughput fashion
(Rizou et al., 2018). Moreover, the role of cellular functionalities with
fundamental homeostatic significance, such as DDR and damage repair
of biomolecules in general (proteins, lipids), needs to be specifically ex-
plored under the viewpoint of senescence. It is possible that selective
targeting of senescent cells after, for example, primary radiation or che-
motherapy treatment may provide a valuable weapon for deleting can-
cer recurrence or metastasis.Within this context, development of drugs
with the ability to securely drive senescent cells to cell death would be
of enormous importance not only for optimization of cancer treatment,
but also for the alleviation of the aging phenotype in a variety of mor-
bidities or co-morbidities after chemotherapy treatment (cardiovascu-
lar, neurodegenerative, immune ageing etc.). For such therapeutic
approaches to be efficient and safe, specificity in targeting senescent
cells is deemed as a factor of paramount significance. To this direction
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various traditional or innovative medicinal chemistry strategies can be
devised. A facile drug delivery system based on encapsulation of
known senolyticswith galacto-oligosaccharides has already been devel-
oped for this purpose and successfully used for selectively targeting se-
nescent cells with cytotoxic drugs (Muñoz-Espín et al., 2018). A
different idea would be the development of bifunctional prodrugs com-
prised by a senolytic pharmacophore linked to a scaffold facilitating lo-
calization in senescent cells at a selective fashion. Notably, SenTraGorTM

may fulfill this scope. Under such an approach, the local and controlled
release of active senolytic compounds could be fine-tuned. This would
be expected to minimize unwanted toxicity and systematic side effects,
thus achieving a pronouncedly safe therapeutic result. To conclude, this
is the beginning of a brand new domain of biomedical research and to
this end, intense and well-orchestrated efforts at multiple levels, from
medicinal chemistry and chemical biology to cellular biology and sys-
tems pharmacology will provide the foundation for revealing the true
potential of senescence-targeting therapies.
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